Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 901
Filtrar
1.
Funct Integr Genomics ; 24(2): 71, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568332

RESUMO

The incidence rate of developing ovarian cancer decreases over the years; however, mortality ranks top among malignancies of women, mainly metastasis through local invasion. Matrilin-2 (MATN2) is a member of the matrilin family that plays an important role in many cancers. However, its relationship with ovarian cancer remains unknown. Our study aimed to explore the function and possible mechanism of MATN2 in ovarian cancer. Human ovarian cancer tissue microarrays were used to detect the MATN2 expression in different types of ovarian cancer using immunohistochemistry (IHC). CCK-8, wound scratch healing assay, transwell assay, and flow cytometry were used to detect cell mobility. Gene and protein expression were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. MATN2 interacts with phosphatase, and the tensin homolog (PTEN) deleted on chromosome 10 was analyzed using TCGA database and co-immunoprecipitation (Co-IP). In vivo experiments were conducted using BALB/c nude mice, and tumor volume and weight were recorded. Tumor growth was determined using hematoxylin and eosin (H&E) and IHC staining. MATN2 was significantly downregulated in ovarian cancer cells. The SKOV3 and A2780 cell mobility was significantly inhibited by MATN2 overexpression, while the cell apoptosis rate was significantly increased. MATN2 overexpression decreased transplanted tumor size in vivo. These results were reversed by inhibiting MATN2. Furthermore, we found that PTEN closely interacted with MATN2 using bioinformatics and Co-IP. MATN2 overexpression significantly inhibited the PI3K/AKT pathway, however, PTEN suppression reversed this effect of MATN2 overexpression. These results indicated that MATN2 may play a critical role in ovarian cancer development by inhibiting cells proliferation and migration. The mechanism was related to interacting with PTEN, thus inhibiting downstream effectors in the PI3K/AKT pathway, which may be a novel target for treating ovarian cancer.


Assuntos
Neoplasias Ovarianas , Animais , Camundongos , Feminino , Humanos , Neoplasias Ovarianas/genética , Proteínas Matrilinas , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Linhagem Celular Tumoral , Camundongos Nus , PTEN Fosfo-Hidrolase/genética
2.
J Neuropathol Exp Neurol ; 83(3): 194-204, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38230623

RESUMO

Hemorrhagic transformation can complicate ischemic strokes after recanalization treatment within a time window that requires early intervention. To determine potential therapeutic effects of matrilin-3, rat cerebral ischemia-reperfusion was produced using transient middle cerebral artery occlusion (tMCAO); intracranial hemorrhage and infarct volumes were assayed through hemoglobin determination and 2,3,5-triphenyltetrazoliumchloride (TTC) staining, respectively. Oxygen-glucose deprivation (OGD) modeling of ischemia was performed on C8-D1A cells. Interactions between matrilin-3 and YTH N6-methyladenosine RNA binding protein F2 (YTHDF2) were determined using RNA immunoprecipitation assay and actinomycin D treatment. Reperfusion after tMCAO modeling increased hemorrhage, hemoglobin content, and infarct volumes; these were alleviated by matrilin treatment. Matrilin-3 was expressed at low levels and YTHDF2 was expressed at high levels in ischemic brains. In OGD-induced cells, matrilin-3 was negatively regulated by YTHDF2. Matrilin-3 overexpression downregulated p-PI3K/PI3K, p-AKT/AKT, ZO-1, VE-cadherin and occludin, and upregulated p-JNK/JNK in ischemic rat brains; these effects were reversed by LY294002 (a PI3K inhibitor). YTHDF2 knockdown inactivated the PI3K/AKT pathway, inhibited inflammation and decreased blood-brain barrier-related protein levels in cells; these effects were reversed by matrilin-3 deficiency. These results indicate that YTHDF2-regulated matrilin-3 protected ischemic rats against post-reperfusion hemorrhagic transformation via the PI3K/AKT pathway and that matrilin may have therapeutic potential in ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Matrilinas/farmacologia , Proteínas Matrilinas/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Ratos Sprague-Dawley , Isquemia Encefálica/metabolismo , Hemorragia , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Fatores de Transcrição , Reperfusão , Hemoglobinas/farmacologia , Hemoglobinas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico
3.
J Cell Mol Med ; 28(3): e18111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38235996

RESUMO

Primary angle-closure glaucoma (PACG) is the leading cause of irreversible blindness in the world. Angle closure induced by pupil block and secondary iris synechia is the fundamental pathology of the PACG. The molecular mechanisms of angle closure have not yet been clearly illustrated. This study was designed to investigate the protein difference in the aqueous humour and explore new biomarker of the PACG. Aqueous humour (AH) was collected from patients with acute primary angle closure (APAC) and cataract (n = 10 in APAC group) and patients with cataract only (n = 10 in control group). Samples were pooled and measured using label-free proteome technology. Then, the differentially expressed proteins (DEPs) were verified by ELISA using independent AH samples (n = 20 each group). More than 400 proteins were revealed in both groups through proteomics. Comparing the two groups, there were 91DEPs. These proteins participate in biological activities such as inflammation, fibrosis, nerve growth and degeneration and metabolism. We found that the expression of transforming growth factor-ß2 and matrilin2 was downregulated in the APAC group. The two proteins are related to inflammation and extracellular matrix formation, which might be involved in angle closure. This study characterized DEPs in AH of the APAC and found a downregulated protein matrilin2.


Assuntos
Humor Aquoso , Catarata , Humanos , Doença Aguda , Humor Aquoso/metabolismo , Catarata/metabolismo , Ensaio de Imunoadsorção Enzimática , Inflamação/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Proteínas Matrilinas/metabolismo
4.
FASEB J ; 38(2): e23406, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38193601

RESUMO

Cancer-associated fibroblast (CAF) has emerged as a key contributor to the remodeling of tumor microenvironment through the expression and secretion of extracellular matrix (ECM) proteins, thereby promoting carcinogenesis. However, the precise contribution of ECM proteins from CAFs to gastric carcinogenesis remains poorly understood. In this study, we find that matrilin-3 (MATN3), an upregulated ECM protein associated with poorer prognosis in gastric cancer patients, originates from CAFs in gastric cancer tissues. Ectopic expression of MATN3 in CAFs significantly promotes the invasion of gastric cancer cells, which can be attenuated by neutralizing MATN3 with its antibody. Notably, a portion of MATN3 protein is found to form puncta in gastric cancer tissues ECM. MATN3 undergoes phase separation, which is mediated by its low complexity (LC) and coiled-coil (CC) domains. Moreover, overexpression of MATN3 deleted with either LC or CC in CAFs is unable to promote the invasion of gastric cancer cells, suggesting that LC or CC domain is required for the effect of CAF-secreted MATN3 in gastric cancer cell invasion. Additionally, orthotopic co-injection of gastric cancer cells and CAFs expressing MATN3, but not its ΔLC and ΔCC mutants, leads to enhanced gastric cancer cell invasion in mouse models. Collectively, our works suggest that MATN3 is secreted by CAFs and undergoes phase separation, which promotes gastric cancer invasion.


Assuntos
Fibroblastos Associados a Câncer , Proteínas Matrilinas , Neoplasias Gástricas , Animais , Humanos , Camundongos , Carcinogênese , Proteínas Matrilinas/genética , Invasividade Neoplásica , 60422 , Neoplasias Gástricas/genética , Microambiente Tumoral
5.
Front Endocrinol (Lausanne) ; 14: 1267946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075060

RESUMO

Pseudoachondroplasia (PSACH) is a rare, dominant genetic disorder affecting bone and cartilage development, characterized by short-limb short stature, brachydactyly, loose joints, joint stiffness, and pain. The disorder is caused by mutations in the COMP gene, which encodes a protein that plays a role in the formation of collagen fibers. In this study, we present the clinical and genetic characteristics of PSACH in two Chinese families. Whole-exome sequencing (WES) analysis revealed two novel missense variants in the COMP gene: NM_000095.3: c.1319G>T (p.G440V, maternal) and NM_000095.3: c.1304A>T (p.D435V, paternal-mosaic). Strikingly, both the G440V and D435V mutations were located in the same T3 repeat motif and exhibited the potential to form hydrogen bonds with each other. Upon further analysis using Missense3D and PyMOL, we ascertained that these mutations showed the propensity to disrupt the protein structure of COMP, thus hampering its functioning. Our findings expand the existing knowledge of the genetic etiology underlying PSACH. The identification of new variants in the COMP gene can broaden the range of mutations linked with the condition. This information can contribute to the diagnosis and genetic counseling of patients with PSACH.


Assuntos
Acondroplasia , Osteocondrodisplasias , Humanos , Proteína de Matriz Oligomérica de Cartilagem/genética , Sequenciamento do Exoma , Proteínas Matrilinas/genética , Osteocondrodisplasias/genética , Acondroplasia/genética
6.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069151

RESUMO

Functionally enhanced mesenchymal stromal cells participate in the repair of intervertebral disc. This study aimed to assess the safety and tolerability of intradiscal administration of matrilin-3-primed adipose-derived stromal cell (ASC) spheroids with hyaluronic acid (HA) in patients with chronic discogenic low back pain (LBP). In this single-arm, open-label phase I clinical trial, eight patients with chronic discogenic LBP were observed over 6 months. Each patient underwent a one-time intradiscal injection of 1 mL of 6.0 × 106 cells/disc combined with HA under real-time fluoroscopic guidance. Safety and feasibility were gauged using Visual Analogue Scale (VAS) pain and Oswestry Disability Index (ODI) scores and magnetic resonance imaging. All participants remained in the trial, with no reported adverse events linked to the procedure or stem cells. A successful outcome-marked by a minimum 2-point improvement in the VAS pain score and a 10-point improvement in ODI score from the start were observed in six participants. Although the modified Pfirrmann grade remained consistent across all participants, radiological improvements were evident in four patients. Specifically, two patients exhibited reduced high-intensity zones while another two demonstrated decreased disc protrusion. In conclusion, the intradiscal application of matrilin-3-primed ASC spheroids with HA is a safe and feasible treatment option for chronic discogenic LBP.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Células-Tronco Mesenquimais , Humanos , Proteínas Matrilinas , Dor Lombar/terapia , Estudos de Viabilidade , Resultado do Tratamento , Degeneração do Disco Intervertebral/tratamento farmacológico , Obesidade
7.
Nature ; 619(7969): 378-384, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37225990

RESUMO

Pioneer transcription factors have the ability to access DNA in compacted chromatin1. Multiple transcription factors can bind together to a regulatory element in a cooperative way, and cooperation between the pioneer transcription factors OCT4 (also known as POU5F1) and SOX2 is important for pluripotency and reprogramming2-4. However, the molecular mechanisms by which pioneer transcription factors function and cooperate on chromatin remain unclear. Here we present cryo-electron microscopy structures of human OCT4 bound to a nucleosome containing human LIN28B or nMATN1 DNA sequences, both of which bear multiple binding sites for OCT4. Our structural and biochemistry data reveal that binding of OCT4 induces changes to the nucleosome structure, repositions the nucleosomal DNA and facilitates cooperative binding of additional OCT4 and of SOX2 to their internal binding sites. The flexible activation domain of OCT4 contacts the N-terminal tail of histone H4, altering its conformation and thus promoting chromatin decompaction. Moreover, the DNA-binding domain of OCT4 engages with the N-terminal tail of histone H3, and post-translational modifications at H3K27 modulate DNA positioning and affect transcription factor cooperativity. Thus, our findings suggest that the epigenetic landscape could regulate OCT4 activity to ensure proper cell programming.


Assuntos
Epigênese Genética , Código das Histonas , Histonas , Nucleossomos , Fator 3 de Transcrição de Octâmero , Fatores de Transcrição SOXB1 , Humanos , Microscopia Crioeletrônica , DNA/química , DNA/genética , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Nucleossomos/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Fator 3 de Transcrição de Octâmero/química , Fator 3 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/ultraestrutura , Processamento de Proteína Pós-Traducional , Fatores de Transcrição SOXB1/metabolismo , Regulação Alostérica , Proteínas de Ligação a RNA/genética , Proteínas Matrilinas/genética , Sítios de Ligação , Montagem e Desmontagem da Cromatina , Diferenciação Celular/genética , Domínios Proteicos
8.
Anticancer Res ; 43(5): 1959-1965, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37097656

RESUMO

BACKGROUND/AIM: Unique cartilage matrix-associated protein (UCMA), a recently discovered vitamin K-dependent protein (VKDP) with a large number of γ-carboxyglutamic acid (Gla) residues, is associated with ectopic calcifications. Although the function of VKDPs is related to their γ-carboxylation status, the carboxylation status of UCMA in breast cancer is still unknown. Here, we investigated the inhibitory effect of UCMA with differing γ-carboxylation status on breast cancer cell lines, such as MDA-MB-231, 4T1, and E0771 cells. MATERIALS AND METHODS: Undercarboxylated UCMA (ucUCMA) was generated by mutating the γ-glutamyl carboxylase (GGCX) recognition sites. The ucUCMA and carboxylated UCMA (cUCMA) proteins were collected from culture media of HEK293-FT cells that had been transfected with mutated GGCX and wild-type UCMA expression plasmids, respectively. Boyden Transwell and colony formation assays were performed to evaluate cancer cell migration, invasion, and proliferation. RESULTS: Culture medium containing cUCMA protein inhibited the migration, invasion, and colony formation of MDA-MB-231 and 4T1 cells to a greater degree than medium containing ucUCMA protein. Significant reductions in the migration, invasion, and colony formation were also observed in cUCMA-treated E0771 cells compared to those in ucUCMA-treated cells. CONCLUSION: The inhibitory role of UCMA in breast cancer is closely related to its γ-carboxylation status. The results of this study may be a basis for the development of UCMA-based anti-cancer drugs.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Proteínas Matrilinas , Células HEK293 , Proteínas/metabolismo , Vitamina K/metabolismo , Cartilagem
9.
Matrix Biol ; 119: 101-111, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001593

RESUMO

Cartilage oligomeric matrix protein (COMP), an extracellular matrix protein, has been shown to enhance proliferation and mechanical integrity in the matrix, supporting functions of the growth plate and articular cartilage. Mutations in COMP cause pseudoachondroplasia (PSACH), a severe dwarfing condition associated with premature joint degeneration and significant lifelong joint pain. The MT (mutant)-COMP mouse mimics PSACH with decreased limb growth, early joint degeneration and pain. Ablation of endoplasmic reticulum stress CHOP signaling eliminated pain and prevented joint degeneration. The health effects of mutant COMP are discussed in relation to cellular/chondrocyte stress in the growth plate, articular cartilage and nearby tissues, and the implications for therapeutic approaches. There are many similarities between osteoarthritis and mutant-COMP protein-induced joint degeneration, suggesting that the relevance of findings in the joints may extend beyond PSACH to idiopathic primary OA.


Assuntos
Acondroplasia , Camundongos , Animais , Proteína de Matriz Oligomérica de Cartilagem/genética , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Acondroplasia/genética , Acondroplasia/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Condrócitos/metabolismo , Mutação , Dor/metabolismo , Proteínas Matrilinas/genética , Proteínas Matrilinas/metabolismo
10.
J Orthop Surg Res ; 18(1): 154, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864518

RESUMO

CONTEXT: Osteoarthritis is a common degenerative disease, the cause of it is still unknown, and the treatment mainly focuses on improving symptoms. Studies have found that Isorhynchophylline (Isorhy) has antioxidant, anti-inflammatory, antiproliferative and neuroprotective effects. OBJECTIVE: This study investigates the role and mechanism of Isorhy in OA. METHODS: The destabilized medial meniscus model was used to mimic OA. Fifteen male Sprague Dawley rats were partitioned into three portions: Normal group, OA group (surgery; normal saline treatment) and OA + Isorhy group (surgery; 50 µM Isorhy treatment) were performed on the first day of every week from the 5th to the 8th week after surgery. After 4 weeks of drug treatment, the rats have been processed without debridement of the knee specimens and fixed using 4% paraformaldehyde for two days. The morphological analysis was performed by H&E, Safranin O-Fast green staining and micro-CT analysis. The specimens were researched employing Micro-CT. In the part of the aggregate methods that were evaluated by qRT-PCR and western blot of the following proteins LC3II/LC3I, Beclin-1, ATG5, ATG7, MMP3 andMMP13. Akt/PI3K signaling related proteins (p-AKT, AKT, p-PI3K, PI3K, p-mTOR, mTOR) were detected by Western blot. BECLIN1 and MMP3 were detected by Immunofluorescence assay. RESULTS: In this present research, it was proved that autophagy-related and cartilage matrix-related proteins in osteoarthritis could be regulated by Isorhynchophylline treatment. The transcriptome sequencing results suggested the regulation was closely associated with PI3K/AKT/mTOR pathway, thereby alleviating osteoarticular inflammation. In-depth study showed that Isorhy could also affect OA in rat OA models, that was indicated by H&E, Safranin O-Fast green staining, and also micro-CT analysis. CONCLUSION: Our findings indicated that Isorhy could be regarded as a prospective candidate for OA treatment.


Assuntos
Condrócitos , Osteoartrite , Masculino , Animais , Ratos , Ratos Sprague-Dawley , Metaloproteinase 3 da Matriz , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Osteoartrite/tratamento farmacológico , Autofagia , Proteína Beclina-1 , Proteínas Matrilinas , Meniscos Tibiais
11.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835255

RESUMO

Mutations in cartilage oligomeric matrix protein (COMP) causes protein misfolding and accumulation in chondrocytes that compromises skeletal growth and joint health in pseudoachondroplasia (PSACH), a severe dwarfing condition. Using the MT-COMP mice, a murine model of PSACH, we showed that pathological autophagy blockage was key to the intracellular accumulation of mutant-COMP. Autophagy is blocked by elevated mTORC1 signaling, preventing ER clearance and ensuring chondrocyte death. We demonstrated that resveratrol reduces the growth plate pathology by relieving the autophagy blockage allowing the ER clearance of mutant-COMP, which partially rescues limb length. To expand potential PSACH treatment options, CurQ+, a uniquely absorbable formulation of curcumin, was tested in MT-COMP mice at doses of 82.3 (1X) and 164.6 mg/kg (2X). CurQ+ treatment of MT-COMP mice from 1 to 4 weeks postnatally decreased mutant COMP intracellular retention, inflammation, restoring both autophagy and chondrocyte proliferation. CurQ+ reduction of cellular stress in growth plate chondrocytes dramatically reduced chondrocyte death, normalized femur length at 2X 164.6 mg/kg and recovered 60% of lost limb growth at 1X 82.3 mg/kg. These results indicate that CurQ+ is a potential therapy for COMPopathy-associated lost limb growth, joint degeneration, and other conditions involving persistent inflammation, oxidative stress, and a block of autophagy.


Assuntos
Acondroplasia , Condrócitos , Curcumina , Animais , Camundongos , Acondroplasia/tratamento farmacológico , Acondroplasia/genética , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Lâmina de Crescimento/metabolismo , Inflamação/metabolismo , Proteínas Matrilinas/genética , Mutação
12.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675026

RESUMO

The intracellular retention of mutant cartilage matrix proteins and pathological endoplasmic reticulum (ER) stress disrupts ossification and has been identified as a shared disease mechanism in a range of skeletal dysplasias including short limbed-dwarfism, multiple epiphyseal dysplasia type 5 (EDM5). Although targeting ER stress is an attractive avenue for treatment and has proven successful in the treatment of a related skeletal dysplasia, to date no drugs have proven successful in reducing ER stress in EDM5 caused by the retention of mutant matrilin-3. Our exciting findings show that by using our established luciferase ER stress screening assay, we can identify a "natural" chemical, curcumin, which is able to reduce pathological ER stress in a cell model of EDM5 by promoting the proteasomal degradation mutant matrilin-3. Therefore, this is an important in vitro study in which we describe, for the first time, the success of a naturally occurring chemical as a potential treatment for this currently incurable rare skeletal disease. As studies show that curcumin can be used as a potential treatment for range of diseases in vitro, current research is focused on developing novel delivery strategies to enhance its bioavailability. This is an important and exciting area of research that will have significant clinical impact on a range of human diseases including the rare skeletal disease, EDM5.


Assuntos
Condrócitos , Curcumina , Proteínas Matrilinas , Humanos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Estresse do Retículo Endoplasmático , Proteínas Matrilinas/metabolismo , Proteólise
13.
Ann Rheum Dis ; 82(3): 416-427, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36109143

RESUMO

OBJECTIVE: Increasing evidence suggests that impaired cartilage is a substantial risk factor for the progression from hyperuricaemia to gout. Since the relationship between cartilage matrix protein and gout flares remains unclear, we investigated its role in monosodium urate (MSU) crystallisation and following inflammation. METHODS: Briefly, we screened for cartilage matrix in synovial fluid from gouty arthritis patients with cartilage injuries. After identifying a correlation between crystals and matrix molecules, we conducted image analysis and classification of crystal phenotypes according to their morphology. We then evaluated the differences between the cartilage matrix protein-MSU complex and the pure MSU crystal in their interaction with immune cells and identified the related signalling pathway. RESULTS: Type II collagen (CII) was found to be enriched around MSU crystals in synovial fluid after cartilage injury. Imaging analysis revealed that CII regulated the morphology of single crystals and the alignment of crystal bows in the co-crystalline system, leading to greater phagocytosis and oxidative stress in macrophages. Furthermore, CII upregulated MSU-induced chemokine and proinflammatory cytokine expression in macrophages, thereby promoting the recruitment of leucocytes. Mechanistically, CII enhanced MSU-mediated inflammation by activating the integrin ß1(ITGB1)-dependent TLR2/4-NF-κB signal pathway. CONCLUSION: Our study demonstrates that the release of CII and protein-crystal adsorption modifies the crystal profile and promotes the early immune response in MSU-mediated inflammation. These findings open up a new path for understanding the relationship between cartilage injuries and the early immune response in gout flares.


Assuntos
Artrite Gotosa , Gota , Humanos , Artrite Gotosa/metabolismo , Ácido Úrico , Colágeno Tipo II , Proteínas Matrilinas , Inflamação/metabolismo , Citocinas/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(36): e2202577119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037361

RESUMO

Calcific aortic valve disease (CAVD) is common in people over the age of 65. Progressive valvular calcification is a characteristic of CAVD and due to chronic inflammation in aortic valve interstitial cells (AVICs) resulting in CAVD progression. IL-38 is a naturally occurring anti-inflammatory cytokine; here, we report lower levels of endogenous IL-38 in AVICs isolated from patients' CAVD valves compared to AVICs from non-CAVD valves. Recombinant IL-38 suppressed spontaneous inflammatory activity and calcium deposition in cultured AVICs. In mice, knockdown of IL-38 enhanced the production of inflammatory mediators in murine AVICs exposed to the proinflammatory stimulant matrilin-2. We also observed that in cultured AVICs matrilin-2 stimulation activated the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome with procaspase-1 cleavage into active caspase-1. The addition of IL-38 to matrilin-2-treated AVICs suppressed caspase-1 activation and reduced the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, runt-related transcription factor 2, and alkaline phosphatase. Aged IL-38-deficient mice fed a high-fat diet exhibited aortic valve lesions compared to aged wild-type mice fed the same diet. The interleukin-1 receptor 9 (IL-1R9) is the putative receptor mediating the anti-inflammatory properties of IL-38; we observed that IL-1R9-deficient mice exhibited spontaneous aortic valve thickening and greater calcium deposition in AVICs compared to wild-type mice. These data demonstrate that IL-38 suppresses spontaneous and stimulated osteogenic activity in aortic valve via inhibition of the NLRP3 inflammasome and caspase-1. The findings of this study suggest that IL-38 has therapeutic potential for prevention of CAVD progression.


Assuntos
Estenose da Valva Aórtica , Calcinose , Interleucinas , Animais , Anti-Inflamatórios/farmacologia , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/tratamento farmacológico , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Calcinose/tratamento farmacológico , Cálcio/metabolismo , Caspases/metabolismo , Células Cultivadas , Humanos , Inflamassomos/metabolismo , Interleucina-1 , Interleucinas/genética , Interleucinas/metabolismo , Interleucinas/farmacologia , Proteínas Matrilinas/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteogênese , Receptores de Interleucina-9/genética , Proteínas Recombinantes/farmacologia
15.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012514

RESUMO

Cartilage oligomeric matrix protein (COMP) is an extracellular matrix (ECM) glycoprotein that is critical for collagen assembly and ECM stability. Mutations of COMP cause endoplasmic reticulum stress and chondrocyte apoptosis, resulting in rare skeleton diseases. The bouquet-like structure of COMP allows it to act as a bridging molecule that regulates cellular phenotype and function. COMP is able to interact with many other ECM components and binds directly to a variety of cellular receptors and growth factors. The roles of COMP in other skeleton diseases, such as osteoarthritis, have been implied. As a well-established biochemical marker, COMP indicates cartilage turnover associated with destruction. Recent exciting achievements indicate its involvement in other diseases, such as malignancy, cardiovascular diseases, and tissue fibrosis. Here, we review the basic concepts of COMP and summarize its novel functions in the regulation of signaling events. These findings renew our understanding that COMP has a notable function in cell behavior and disease progression as a signaling regulator. Interestingly, COMP shows distinct functions in different diseases. Targeting COMP in malignancy may withdraw its beneficial effects on the vascular system and induce or aggravate cardiovascular diseases. COMP supplementation is a promising treatment for OA and aortic aneurysms while it may induce tissue fibrosis or cancer metastasis.


Assuntos
Doenças Cardiovasculares , Proteína de Matriz Oligomérica de Cartilagem , Osteoartrite , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/terapia , Cartilagem/metabolismo , Proteína de Matriz Oligomérica de Cartilagem/genética , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Condrócitos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Humanos , Proteínas Matrilinas/metabolismo , Osteoartrite/metabolismo , Osteoartrite/terapia
16.
J Vis Exp ; (185)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35876554

RESUMO

Various biomaterial scaffolds have been developed to guide cell adhesion and proliferation in hopes to promote specific functions for in vitro and in vivo uses. The addition of growth factors into these biomaterial scaffolds is generally done to provide an optimal cell culture environment, mediating cell differentiation and its subsequent functions. However, the growth factors in a conventional biomaterial scaffold are typically designed to be released upon implantation, which could result in unintended side effects on surrounding tissue or cells. Here, the DNA-inspired Janus base nano-matrix (JBNm) has successfully achieved a highly localized microenvironment with a layer-by-layer structure for self-sustainable cartilage tissue constructs. JBNms are self-assembled from Janus base nanotubes (JBNts), matrilin-3, and transforming growth factor beta-1 (TGF-ß1) via bioaffinity. The JBNm was assembled at a TGF-ß1:matrilin-3:JBNt ratio of 1:4:10, as this has been the determined ratio at which proper assembly into the layer-by-layer structure could occur. First, the TGF-ß1 solution was added to the matrilin-3 solution. Then, this mixture was pipetted several times to ensure sufficient homogeneity before the addition of the JBNt solution. This formed the layer-by-layer JBNm, after pipetting several times again. A variety of experiments were performed to characterize the layer-by-layer JBNm structure, JBNts alone, matrilin-3 alone, and TGF-ß1 alone. The formation of JBNm was studied with UV-Vis absorption spectra, and the structure of the JBNm was observed with transmission electron microscopy (TEM). As the innovative layer-by-layer JBNm scaffold is formed on a molecular scale, the fluorescent dye-labeled JBNm could be observed. The TGF-ß1 is confined within the inner layer of the injectable JBNm, which can prevent the release of growth factors to surrounding areas, promote localized chondrogenesis, and promote an anti-hypertrophic microenvironment.


Assuntos
Cartilagem , Fator de Crescimento Transformador beta1 , Materiais Biocompatíveis , Cartilagem/metabolismo , Condrogênese , Proteínas Matrilinas/metabolismo , Engenharia Tecidual , Tecidos Suporte/química
17.
Adv Sci (Weinh) ; 9(27): e2200546, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901491

RESUMO

Extracellular matrix (ECM) remodeling is crucial in the regulation of gastric cancer (GC) progression. This work aims to reveal novel posttranslational modifications and their relevant mechanisms in GC. In 3D matrix culture and animal models, it is found that fibrillin 1 (FBN1) expression is increased in advanced GC and has succinylation modification. The succinylation modification of FBN1 blocks its degradation by matrix metalloproteinases (MMPs). The long-term accumulation and deposition of FBN1 enhance tumor progression by activating TGF-ß1 and intracellular PI3K/Akt pathway. The FBN1 succinylation site monoclonal antibody can effectively intervene the effect of succinylation modification and inhibit GC progression. FBN1 is specifically upregulated in the progression of GC compared with other tumors. In conclusion, FBN1 is widely present in the form of K672-succinylated modifications in GC. Besides, the succinyl group of FBN1 blocks its binding to MMP2, inhibits its degradation by MMP2, and leads to the accumulation of FBN1, which poses a long-term risk to the poor prognosis of GC.


Assuntos
Neoplasias Gástricas , Animais , Anticorpos Monoclonais , Fibrilina-1/metabolismo , Fibrilinas , Hidrólise , Proteínas Matrilinas , Metaloproteinase 2 da Matriz , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Fator de Crescimento Transformador beta1
18.
J Mol Med (Berl) ; 100(6): 947-961, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35583819

RESUMO

Valproic acid (VPA), widely used for the treatment of neurological disorders, has anti-fibrotic activity by reducing collagen production in the postoperative conjunctiva. In this study, we investigated the capacity of VPA to modulate the postoperative collagen architecture. Histochemical examination revealed that VPA treatment was associated with the formation of thinner collagen fibers in the postoperative days 7 and 14 scars. At the micrometer scale, measurements by quantitative multiphoton microscopy indicated that VPA reduced mean collagen fiber thickness by 1.25-fold. At the nanometer scale, collagen fibril thickness and diameter measured by transmission electron microscopy were decreased by 1.08- and 1.20-fold, respectively. Moreover, delicate filamentous structures in random aggregates or closely associated with collagen fibrils were frequently observed in VPA-treated tissue. At the molecular level, VPA reduced Col1a1 but induced Matn2, Matn3, and Matn4 in the postoperative day 7 conjunctival tissue. Elevation of matrilin protein expression induced by VPA was sustained till at least postoperative day 14. In primary conjunctival fibroblasts, Matn2 expression was resistant to both VPA and TGF-ß2, Matn3 was sensitive to both VPA and TGF-ß2 individually and synergistically, while Matn4 was modulable by VPA but not TGF-ß2. MATN2, MATN3, and MATN4 localized in close association with COL1A1 in the postoperative conjunctiva. These data indicate that VPA has the capacity to reduce collagen fiber thickness and potentially collagen assembly, in association with matrilin upregulation. These properties suggest potential VPA application for the prevention of fibrotic progression in the postoperative conjunctiva. KEY MESSAGES: VPA reduces collagen fiber and fibril thickness in the postoperative scar. VPA disrupts collagen fiber assembly in conjunctival wound healing. VPA induces MATN2, MATN3, and MATN4 in the postoperative scar.


Assuntos
Cicatriz , Fator de Crescimento Transformador beta2 , Cicatriz/tratamento farmacológico , Cicatriz/patologia , Colágeno/metabolismo , Túnica Conjuntiva/patologia , Fibroblastos/metabolismo , Fibrose , Humanos , Proteínas Matrilinas/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
19.
Inflamm Res ; 71(5-6): 681-694, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35411432

RESUMO

OBJECTIVE: Inflammatory infiltration in aortic valves promotes calcific aortic valve disease (CAVD) progression. While soluble extracellular matrix (ECM) proteins induce inflammatory responses in aortic valve interstitial cells (AVICs), the impact of monocytes on AVIC inflammatory responses is unknown. We tested the hypothesis that monocytes enhance AVIC inflammatory responses to soluble ECM protein in this study. METHODS: Human AVICs isolated from normal aortic valves were cocultured with monocytes and stimulated with soluble ECM protein (matrilin-2). ICAM-1 and IL-6 productions were assessed. YAP and NF-κB phosphorylation were analyzed. Recombinant CD18, neutralizing antibodies against ß2-integrin or ICAM-1, and inhibitor of YAP or NF-κB were applied. RESULTS: AVIC expression of ICAM-1 and IL-6 was markedly enhanced by the presence of monocytes, although matrilin-2 did not affect monocyte production of ICAM-1 or IL-6. Matrilin-2 up-regulated the expression of monocyte ß2-integrin and AVIC ICAM-1, leading to monocyte-AVIC adhesion. Neutralizing ß2-integrin or ICAM-1 in coculture suppressed monocyte adhesion to AVICs and the expression of ICAM-1 and IL-6. Recombinant CD18 enhanced the matrilin-2-induced ICAM-1 and IL-6 expression in AVIC monoculture. Further, stimulation of coculture with matrilin-2 induced greater YAP and NF-κB phosphorylation. Inhibiting either YAP or NF-κB markedly suppressed the inflammatory response to matrilin-2 in coculture. CONCLUSION: Monocyte ß2-integrin interacts with AVIC ICAM-1 to augment AVIC inflammatory responses to soluble matrilin-2 through enhancing the activation of YAP and NF-κB signaling pathways. Infiltrated monocytes may promote valvular inflammation through cell-cell interaction with AVICs to enhance their sensitivity to damage-associated molecular patterns.


Assuntos
Valva Aórtica , Monócitos , Valva Aórtica/metabolismo , Antígenos CD18/metabolismo , Células Cultivadas , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/metabolismo , Proteínas Matrilinas/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo
20.
Function (Oxf) ; 3(2): zqac008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399495

RESUMO

Targeting chondrocyte dynamics is a strategy for slowing osteoarthritis progression during aging. We describe a stable-isotope method using in vivo deuterium oxide labeling and mass spectrometry to measure protein concentration, protein half-life, cell proliferation, and ribosomal biogenesis in a single sample of murine articular cartilage. We hypothesized that a 60-d labeling period would capture age-related declines in cartilage matrix protein content, protein synthesis rates, and cellular proliferation. Knee cartilage was harvested to the subchondral bone from 25- to 90-wk-old female C57BL/6J mice treated with deuterium oxide for 15, 30, 45, and 60 d. We measured protein concentration and half-lives using targeted high resolution accurate mass spectrometry and d2ome data processing software. Deuterium enrichment was quantified in isolated DNA and RNA to measure cell proliferation and ribosomal biogenesis, respectively. Most collagen isoforms were less abundant in aged animals, with negligible collagen synthesis at either age. In contrast, age altered the concentration and half-lives of many proteoglycans and other matrix proteins, including several with greater concentration and half-lives in older mice such as proteoglycan 4, clusterin, and fibronectin-1. Cellular proteins were less abundant in older animals, consistent with reduced cellularity. Nevertheless, deuterium was maximally incorporated into 60% of DNA and RNA by 15 d of labeling in both age groups, suggesting the presence of two large pools of either rapidly (<15 d) or slowly (>60 d) proliferating cells. Our findings indicate that age-associated changes in cartilage matrix protein content and synthesis occur without detectable changes in the relative number of proliferating cells.


Assuntos
Cartilagem Articular , Camundongos , Animais , Feminino , Proteínas Matrilinas/genética , Marcação por Isótopo/métodos , Óxido de Deutério/metabolismo , Deutério/metabolismo , Camundongos Endogâmicos C57BL , Colágeno/genética , Proliferação de Células , DNA/metabolismo , Biossíntese de Proteínas , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...